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In Alzheimer’s disease (AD) diagnosis process, functional brain image modalities such as Single-Photon

Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been widely

used to guide the clinicians. However, the current evaluation of these images entails a succession of

manual reorientations and visual interpretation steps, which attach in some way subjectivity to the

diagnostic. In this work, a complete computer aided diagnosis (CAD) system for an automatic evaluation

of the neuroimages is presented. Principal component analysis (PCA)-based methods are proposed as

feature extraction techniques, enhanced by other linear approaches such as linear discriminant analysis

(LDA) or the measure of the Fisher discriminant ratio (FDR) for feature selection. The final features allow to

face up the so-called small sample size problem and subsequently they are used for the study of neural

networks (NN) and support vector machine (SVM) classifiers. The combination of the presented methods

achieved accuracy results of up to 96.7% and 89.52% for SPECT and PET images, respectively, which means

a significant improvement over the results obtained by the classical voxels-as-features (VAF) reference

approach.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Alzheimer’s disease (AD) is a progressive, degenerative brain
disorder that gradually destroys memory, reason, judgment, lan-
guage, and eventually the ability to carry out even the simplest
tasks. Recently, scientists have begun to do research on diagnosing
AD with different kinds of brain imaging, trying to diagnose this
dementia in its early stage, when the application of the treatment is
more effective. Positron Emission Tomography (PET) and Single
Photon Emission Computed Tomography (SPECT) scans are two
types of non-invasive (i.e., no surgery is required) tests that have
been widely used in the AD diagnosis. For both PET and SPECT tests,
a small amount of radioactive pharmaceutical is injected into the
patient and emission detectors are placed on the brain, providing
functional information about the brain activity. However, despite
these useful imaging techniques, early detection of AD still remains
a challenge since conventional evaluation of these scans often
ll rights reserved.
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relies on manual reorientation, visual reading and semiquantita-
tive analysis.

Several approaches have been recently proposed in the literature
aiming at providing an automatic tool that guides the clinician in the
AD diagnosis process [1–5]. These approaches can be categorized into
two types: univariate and multivariate approaches. The first family
includes statistical parametric mapping (SPM) [6] and its numerous
variants. SPM consists of doing a voxelwise statistical test, comparing
the values of the image under study to the mean values of the group of
normal images. Subsequently the significant voxels are inferred by
using random field theory. It was not developed specifically to study a
single image, but for comparing groups of images. The latter family is
based on the analysis of the images, feature extraction and posterior
classification in different classes. Among these techniques, we can
find the classical voxels-as-features (VAF) approach for SPECT images
[1], which considers the gray image levels as features. Input patterns
can be viewed as points in the multidimensional space defined by the
input feature measurements. The main problem to be faced up by
these techniques is the well-known small sample size problem, that is,
the number of available samples is much lower than the number of
features used in the training step.

Principal component analysis (PCA) corresponds to multivariate
approaches and was already applied to functional brain images in
[6] in a descriptive fashion, where the impossibility of using this
transformation to make any statistical inference is highlighted.
However, in this work, a new PCA-based approach is used in
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combination with supervised learning methods, which in turn
solves the small sample size problem since the dimension of the
feature space undergoes a significant reduction. Other techniques
like linear discriminant analysis (LDA) or the Fisher discriminant
ratio (FDR) are combined with PCA to obtain the final features to be
used in a classification step.

The task of the supervised learner is to predict the class of the
input object after having seen a number of training examples. In
this work, support vector machines (SVMs) and neural networks
(NN) are trained on the features extracted from the neurological
images, and their performances in the classification task we are
dealing with are finally discussed.
2. Databases description

2.1. PET

Data used in the preparation of this article were obtained from
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (www.
loni.ucla.edu/ADNI). The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit organizations, as a
60 million, 5-year public-private partnership. The primary goal of
ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD). Determination of sensitive and
specific markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and monitor
their effectiveness, as well as lessen the time and cost of clinical trials.

The Principle Investigator of this initiative is Michael W. Weiner,
M.D., VA Medical Center and University of California—San Fran-
cisco. ADNI is the result of efforts of many co-investigators from a
broad range of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across the U.S. and
Canada. For more information see www.adni-info.org.

Baseline Fludeoxyglucose (18F-FDG) PET data from 219 ADNI
participants, acquired from Siemens, General Electric (GE), and
Philips PET scanners, were collected from the ADNI Laboratory on
NeuroImaging (LONI, University of California, Los Angeles). PET
data acquired from the Siemens HRRT and BioGraph HiRez
scanners were excluded from the primary analysis due to differ-
ences in the pattern of FDG uptake. Participants enrollment was
conditioned to some eligibility criteria. General inclusion/exclu-
sion criteria—based on measures of disease severity, such as the
Mini-Mental State Exam (MMSE) or Clinical Dementia Rating (CDR)
were as follows:
�

Tab
Dem

La

N

A

A

A

AD
NORMAL control subjects: MMSE scores between 24 and 30
(inclusive), CDR of 0, non-depressed, non-MCI, and non-demented.
The age range of normal subjects will be roughly matched to that
le 1
ographic details of the SPECT images data set.

bel #Samples

ORMAL 41

D 1 27

D 2 19

D 3 4

1 ¼ possible AD, AD 2 ¼ probable AD, AD 3 ¼ certain AD.
of MCI and AD subjects. Therefore, there should be minimal
enrollment of normals under the age of 70.

�
 MCI subjects: MMSE scores between 24 and 30 (inclusive), a

memory complaint, have objective memory loss measured by
education adjusted scores on Wechsler Memory Scale Logical
Memory II, a CDR of 0.5, the absence of significant levels of
impairment in other cognitive domains, essentially preserved
activities of daily living, and an absence of dementia.

�
 Mild AD: MMSE scores between 20 and 26 (inclusive), CDR of 0.5

or 1.0, and meets NINCDS/ADRDA [7] criteria for probable AD.

Therefore, FDG PET data were separated into three different
classes: Normal Control (NC), Mild Cognitive Impairment (MCI) and
Alzheimer’s Disease (AD) images. The patients of this study were
divided into 53 AD (age range: 77.2–7.2 (mean–standard devia-
tion)), 114 MCI (age range: 75.1–7.4), and 52 NC (age range: 76.5–
4.8). For posterior analysis, the data were arranged into three
different groups, in order to label the data into only two different
classes:
�
 Group 1: All the database images are considered. Both AD and
MCI patients are labeled as positive, and Normal controls as
negative.

�
 Group 2: Only AD (positive) and Normal controls (negative)

patient images are considered.

�
 Group 3: Only MCI (positive) and Normal controls (negative)

patient images are considered.

2.2. SPECT

A SPECT database consisting of 91 patients is also used to
evaluate the proposed methods. These images were taken with a
PRISM 3000 machine and were reconstructed from projection data
by filtered backprojection (FBP) in combination with a Butterworth
noise filter.

The SPECT database was initially labeled by experienced
clinicians of the Virgen de las Nieves Hospital (Granada, Spain)
as NORMAL for subjects without any symptoms of the disease and
AD to refer to possible (AD 1), probable (AD 2) or certain (AD 3)
patients. We combine the latter three labels and only use two
classes: NOR and AD. In total, the database consists of 91 patients:
41 NOR and 50 AD. Table 1 shows other demographic details of the
SPECT database.
3. Image preprocessing

All the images were normalized through a general affine model,
with 12 parameters [8] using the SPM5 software [9]. After the affine
normalization, the resulting image was registered using a more
complex non-rigid spatial transformation model. The non-linear
deformations to the Montreal Neurological Imaging (MNI)
Template were parameterized by a linear combination of the
Sex (M/F) (%) Mean age [range/standard

deviation] at scan time

32.95/12.19 71.51 [46–85/7.99]

10.97/18.29 65.29 [23–81/13.36]

13.41/9.76 65.73 [46–86/8.25]

0/2.43 76 [69–83/9.90]

www.loni.ucla.edu/ADNI
www.loni.ucla.edu/ADNI
www.loni.ucla.edu/ADNI
www.loni.ucla.edu/ADNI
www.loni.ucla.edu/ADNI
www.adni-info.org
www.adni-info.org
www.adni-info.org
www.adni-info.org
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Fig. 1. Mask application to discard voxels corresponding to low activation regions.
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lowest-frequency components of the 3D cosine transform bases
[10]. A small-deformation approach was used, and regularization
was by the bending energy of the displacement field, ensuring that
the voxels in different images refer to the same anatomical
positions in the brains [11]. The complete registration procedure
gives rise to a 69�95�79 voxel-sized representation of each
sample. In order to improve the computational efficiency of the
developed algorithms, the dimension of these volumes was
reduced to 34 �47 �39 by decimating the original 3D volume
by a 2�2�2 factor.

After the spacial normalization, an intensity normalization was
required in order to perform direct comparisons between different
subjects images. The intensity of the images was normalized to a
value Imax, obtained averaging the 0.1% of the highest voxel
intensities exceeding a threshold. The threshold was fixed to the
10th bin intensity value of a 50-bins intensity histogram.
4. Voxel selection

The subsampled brain volumes are made up of 34� 47�
39� 6� 104 voxels. The complete set of these voxels may contain
non-useful or redundant information for our concerning classifica-
tion task, and therefore it is desired to be removed in order to
develop efficient classification algorithms. In the feature extraction
step (see Section 5) only the meaningful information regarding the
detection of the AD will be extracted from the images in a reduced
feature space. However, before going on the feature extraction, a
previous stage in which voxels of interest are selected may speed
up the feature extraction process and make it more efficient. Brain
regions characterized by low activity in normal controls as well as
voxels located at the borders outside the brain are not considered
for the next steps. A mask is constructed by averaging all the normal
subjects and selecting the voxels with intensity level above 50% the
maximum intensity. This step reduces the number of voxels to
� 2� 104. Fig. 1 shows the voxels selected after the mask
application on the ADNI images. Other methods for selecting
voxels of interest are proposed in [12].
5. Feature extraction

After the preprocessing steps, a 34 �47 �39 voxel-sized brain
representation for each subject is obtained. Let us consider a set of
N such brain volumes rearranged into n-dimensional vector forms
{I1,I2,y,IN}, and assume that each image belongs to one of c classes
fx1,x2, . . . ,xcg. If the mask explained above is applied, the input
feature space dimension becomes reduced to n� 2� 104. This
number of features is still much larger than the number of available
samples, i.e. nbN, which is known as the small sample size problem.
In order to face this problem up, we first apply compression
techniques to the images, so the dimension is drastically reduced
to a lower dimension m�N.

5.1. Principal component analysis

Principal component analysis (PCA) [13] has been called one of
the most valuable results from applied linear algebra. PCA is used
abundantly in all forms of analysis—from neuroscience to
computer graphics—because it is a simple, non-parametric
method of extracting relevant information from confusing data
sets. With minimal additional effort PCA provides a roadmap for
how to reduce a complex data set to a lower dimension to reveal the
sometimes hidden, simplified dynamics that often underlie it. This
technique and other PCA-based methods have been successfully
applied for different image classification purposes [14,15], and
specifically for neuroimage classification problems [16,17].

PCA generates an orthonormal basis vector that maximizes the
scatter of all the projected samples. After the preprocessing steps, the
n remaining voxels for each subject are rearranged into a vector form.
Let X¼[x1,x2,y,xN] be the sample set of these vectors, where N is the
number of patients. After normalizing the vectors to unity norm and
subtracting the grand mean, a new vector set Y¼[y1, y2, y, yN] is
obtained, where each yi represents an n-dimensional normalized
vector, yi¼(yi1,yi2,y,yin)t, i¼1,2,y,N. The covariance matrix of the
normalized vectors set is defined as

RY ¼
1

N

XN

i ¼ 1

yiy
t
i ¼

1

N
YYt

ð1Þ

and the eigenvector and eigenvalue matrices U, K are computed as

RYU¼UK ð2Þ

Note that YYt is an n�n matrix while YtY is an N�N matrix. If
the sample size N is much smaller than the dimensionality n, then
diagonalizing YtY instead of YYt reduces the computational com-
plexity [15]

ðYtYÞW¼WK1 ð3Þ

T¼ YW ð4Þ

where K1 ¼ diagfl1,l2, . . . ,lNg and T¼ ½U1,U2, . . . ,UN�. Derived
from the eigenface concept [15], and due to its still brain-like
appearance, the eigenvectors or principal components (PCs)
Ui, i¼ 1, . . . ,N of the covariance matrix are called eigenbrains

[18]. Fig. 2 shows the first and second eigenbrains obtained from
the ADNI database when AD and NORMAL subjects are considered
in the solution of the eigenvalue problem.

5.2. Linear discriminant analysis

Since the learning set is labeled, it makes sense to use this
information to build a more reliable method for reducing the
dimensionality of the feature space. Here we argue that using class
specific linear methods for dimensionality reduction and simple
classifiers in the reduced feature space, one may get better
recognition rates than with other multivariate approaches. LDA
[19] is an example of a class specific method, in the sense that it
tries to ‘‘shape’’ the scatter in order to make it more reliable for
classification. Let the between-class scatter matrix be defined as

SB ¼
Xc

i ¼ 1

Niðli�lÞðli�lÞT ð5Þ
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and the within-class scatter matrix be defined as

SW ¼
Xc

i ¼ 1

X

xk AXi

ðxk�liÞðxk�liÞ
T

ð6Þ

where li is the mean image of class oi, and Ni is the number of
samples in class oi. If SW is nonsingular, LDA chooses the optimal
projection Wopt as the matrix with orthonormal columns which
maximizes the ratio of the determinant of the between-class
scatter matrix of the projected samples to the determinant of
the within-class scatter matrix of the projected samples, i.e.,

Wopt ¼ argmax
W

jWT SBWj

jWT SW Wj
¼ ½w1w2 . . .wl� ð7Þ

where fwiji¼ 1,2, . . . ,lg is the set of generalized eigenvectors of SB

and SW corresponding to the m largest generalized eigenvalues
fliji¼ 1,2, . . . ,lg, i.e.,

SBwi ¼ liSW wi ð8Þ

Note that there are at most c�1 nonzero generalized eigenva-
lues, and so an upper bound on l is c�1, where c is the number of
classes [20].

In the image classification problem, one is confronted with the
difficulty that the within-class scatter matrix SW ARn�n is always
singular. This is a consequence of the fact that the rank of SW is at
most N�c, and, in general, the number of images in the learning set
N is much smaller than the number of selected features in each
image n. This means that it is possible to choose the matrix Wopt

such that the within-class scatter of the projected samples can be
made exactly zero. In order to overcome the drawback of a singular
SW, LDA is usually applied after the PCA transform. Thus, PCA
reduces the dimension of the feature space to mrN�c, and then,
the standard LDA transform is applied to reduce the dimension to
l¼c�1 [21].
6. Feature selection

6.1. Fisher discriminant ratio

A description of the databases in terms of variability can be
understood by computing the importance of each projection
eigenvector or PC. For example, Fig. 3(a) shows the contribution
of the first 10 PCs when the whole SPECT database is used to
compute the PCA projection axis. The obtained PCs from Eq. (4) are
sorted out in decreasing order according to their associated
eigenvalue l. As expected, the first PC holds the maximum
information which explains more than 20% of the total variance.
However, Fig. 3(b) reveals the actual discrimination power of each
PC. Looking at the first coefficient, we can roughly say that values
greater than 0 correspond to NORMAL subjects (represented as
blue crosses) whereas negative values are associated to AD patients
(depicted as red asterisks). This fact reveals that the variability
information held in this coefficient is useful in distinguishing AD
from NORMAL subjects. However, this does not occur for the
second coefficient, whose 8% of explained variability does not seem
to be related to the AD, since it takes values contained in the same
range for both classes.

This fact motivates us to sort out the obtained PCA coefficients
by using other more useful measure for classification purposes. We
propose the Fisher discriminant ratio (FDR) as criteria for rearran-
ging the obtained coefficients instead of their associated eigenva-
lue. This makes sense since the FDR takes into account the
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information of the labels preassigned to the data. It is defined as
follows:

FDR¼
ðm1�m2Þ

2

s2
1þs2

2

ð9Þ

where mi and si denote the i-th class within class mean value and
variance, respectively. Thus, in the classification stage, the training
set is used to compute the PCs and the FDR values of the resulting
PCA projection coefficients are computed. The test sample is
projected onto the computed PCs, and the obtained test coefficients
are rearranged in decreasing order according to the previous FDR
values obtained from the train set. In some cases, this rearrange-
ment will improve the classification results as shown in Section 8.
Other metrics to determine the robustness of the PCs used for
classification purposes are proposed in [22].

6.2. Slices of interest (SOIs)

PCA can be applied to the entire brain volumes in order to obtain
a better description of the whole database. Theoretically the
obtained PCs will hold the main differences among the subjects
that make the database up, among which hopefully the differences
between the two classes samples can be found. However, when
dealing with such high dimensional data, PCA is sensitive to any
other differences, maybe derived from the normalization process or
due to the different origins of the images, in such a way that using
the main eigenbrains as projection axes might contain ‘‘noisy’’
differences—that is, not useful for distinguishing the AD infor-
mation.

This fact motivates us to apply PCA to the brain volume areas of
interest. We can then search for the slices of interest (SOI) and
discard the rest for the classification task. We explore the slices
along the three directions and apply PCA to determine each one’s
discriminatory capacity. This allows us to pre-locate the most
useful voxels for the classification task we are dealing with.
7. Classification

The objective of a binary classifier is to build a function f :

Rn
�!f71g using training data that is, n-dimensional patterns xi

and class labels yi:

ðx1,y1Þ,ðx2,y2Þ, . . . ,ðxN ,yNÞAðR
n
� f71gÞ ð10Þ

so that f will correctly classify new examples (x,y).

7.1. Support vector machines

Support vector machines (SVM) [23] separate binary labeled
training data by the hyperplane

gðxÞ ¼wT xþw0 ð11Þ

where w is known as the weight vector and w0 as the threshold.
This hyperplane is maximally distant from the two classes (known
as the maximal margin hyperplane).

When no linear separation of the training data is possible, SVM
can work effectively in combination with kernel techniques so that
the hyperplane defining the SVM corresponds to a non-linear
decision boundary in the input space. If the data are mapped to
some other (possibly infinite dimensional) Euclidean space using a
mapping FðxÞ, the training algorithm only depends on the data
through dot products in such an Euclidean space, i.e. on functions of
the form FðxiÞ �FðxjÞ. If a ‘‘kernel function’’ K is defined such that
Kðxi,xjÞ ¼FðxiÞ �FðxjÞ, it is not necessary to know the F function
during the training process. The two commonly used families of
kernels are polynomial kernels and radial basis functions (RBF),
defined as follows:
�
 Polynomial:

Kðxi,xjÞ ¼ ½gðxi � xjÞþc�d ð12Þ
�
 Radial basis functions:

Kðxi,xjÞ ¼ expð�gJxi�xjJ
2
Þ ð13Þ

For polynomial kernels, the case of d¼1 is a linear kernel, and
the case of d¼2 gives a quadratic kernel, and is very
commonly used.

In the test phase, an SVM is used by computing the sign of

f ðxÞ ¼
XNS

i ¼ 1

aiyiFðsiÞ �FðxÞþw0 ¼
XNS

i ¼ 1

aiyiKðsi,xÞþw0 ð14Þ

where NS is the number of support vectors, si are the support
vectors and yi their associated labels.

7.2. Neural networks

An artificial neural network (ANN) [24] is an information
processing paradigm that is inspired by the way biological
nervous systems, such as the brain, processes information. ANNs
can be viewed as weighted directed graphs in which artificial
neurons are nodes and directed edges (with weights) are
connections between neuron outputs and neuron inputs. Based
on the connection pattern (architecture), ANNs can be grouped into
two categories: (i) feed-forward networks, in which graphs have no
loops, and (ii) recurrent (or feedback) networks, in which loops occur
because of feedback connections. Different connectivities yield
different network behaviors. Generally speaking, feed-forward
networks are static, that is, they produce only one set of output
values rather than a sequence of values from a given input. Feed-
forward networks are memory-less in the sense that their response
to an input is independent of the previous network state. Recurrent,
or feedback, networks, on the other hand, are dynamic systems.
When a new input pattern is presented, the neuron outputs are
computed. Because of the feedback paths, the inputs to each neuron
are then modified, which leads the network to enter a new state.

Feed-forward networks often have one or more hidden layers
(HL) of sigmoid neurons followed by an output layer of linear
neurons as shown in Fig. 4. Multiple layers of neurons with
nonlinear transfer functions allow the network to learn
nonlinear and linear relationships between input and output
vectors.

Learning process in the ANN context can be viewed as the
problem of updating network architecture and connection weights
so that a network can efficiently perform a specific task. The ability
of ANNs to automatically learn from examples makes them
attractive and exciting. The development of the back-propagation
learning algorithm for determining weights in a multilayer per-
ceptron has made these networks the most popular among ANN
researchers.

For the experiments presented in this work a feed-forward
neural network with the following configuration was used:
�
 One hidden layer and increasing number of neurons and a linear
output layer.

�
 Hyperbolic tangent sigmoid transfer function: f(n)¼ 2/

(1+exp(�2*n))�1, for input layers.

�
 Linear transfer function: f(n)¼ n, for output layer.

�
 Weight and bias values are updated according to Levenberg–

Marquardt optimization.
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�
 Gradient descent with momentum weight and bias is used as
learning function.

8. Results

In this section, different combinations of the proposed feature
extraction and classification schemes are evaluated on SPECT and
PET databases. The obtained results are compared with VAF
method, which uses all the voxels in the brain images directly as
features to train and test a linear kernel SVM [1]. All the
experiments are carried out by the leave-one-out cross-
validation strategy, that is, the complete classification system is
trained by taking into account all the samples but one, which is
used as test sample. This procedure is repeated as many times as
samples in the database, leaving each sample out in each iteration.
Finally, an average accuracy rate is computed. Leave-one-out has
been used to assess the discriminative accuracy of different
multivariate analysis methods applied to the discrimination of
frontotemporal dementia from AD [25] and in classifying atrophy
patterns based on magnetic resonance imaging (MRI) images [26].

Besides the accuracy rate of the classification system, sensitivity
and specificity are other statistical measures of the performance of
a binary classification test, and moreover, they are the most widely
statistics used to describe a diagnostic test. Sensitivity measures
the proportion of actual positives which are correctly identified as
such (e.g. the percentage of sick people who are identified as having
the condition). Specificity measures the proportion of negatives
which are correctly identified (e.g. the percentage of healthy people
who are identified as not having the condition), and their expres-
sions are

Sensitivity¼
TP

TPþFN
, Specificity¼

TN

TNþFP
ð15Þ

where TP is the number of true positives: number of AD patient
volumes correctly classified; TN is the number of true negatives:
number of control volumes correctly classified; FP is the number of
false positives: number of control volumes classified as AD patient;
FN is the number of false negatives: number of AD patient volumes
classified as control. These probabilities reveal the ability to detect
NOR/AD patterns thus, the best CAD system is the one that achieves
the best trade-off between specificity and sensitivity. Positive (PL)
and negative likelihoods (NL) are displayed as a measure of the
positive and predictive value of the method, given its prevalence
independence:

PL¼ Sensitivity=ð1�SpecificityÞ ¼
TP

FP

NL¼ ð1�SensitivityÞ=Specificity¼
FN

TN

A graphical plot of sensitivity versus (1�specificity) is usually
represented, which is called receiver operating curve (ROC). The
larger the area under the ROC is, the better the trade-off between
sensitivity and specificity is reached.

8.1. Results on SPECT database

Classical PCA and LDA techniques have been evaluated on the
SPECT database (see Table 1 for a detailed description) as feature
extraction techniques in combination with the proposed
supervised classifiers SVM and NN classifiers. Results of
evaluating the complete CAD system are shown in Table 2. The
brain volumes are first subsampled by a factor of 2�2�2 and
subsequently masked as explained in Section 4, and then, the
remaining voxels undergo the linear PCA and LDA transformations.
The number of PCA coefficients used in the classification step has
been varied from m¼1 to N�1, being N¼91, the number of
samples in the database. However, as expected, the best results
are achieved when only a few of them are used. Specifically, the
number m¼3 has shown to be the optimal number of PCA
coefficients to be used in this classification problem for both
SVM and NN classifiers. The application of LDA to these
coefficients improves the accuracy rates in all cases in spite of
the reduction of the feature space from m¼3 to l¼1, but this final
feature has shown to be more useful for separating NORMAL and
AD classes. The rearrangement of the PCs by the FDR criterion
improves the accuracy results with respect to PCA/LDA only when
NN with k¼3 and 5 neurons in the HL are used, yielding the highest
peak accuracy of 91.21%. In any case, all the experiments increased
the sensitivity – and therefore, the final accuracy rate – obtained by
the baseline VAF approach.

The search of SOIs in order to perform PCA only on the most
interesting brain regions were also carried out on the SPECT
database. In this case, we no longer apply the mask since the
feature space is already reduced significantly by choosing sepa-
rated slices instead of the whole volume. When applying PCA slice



Table 2
Results obtained from the evaluation of SVM and feed-forward neural networks

classifiers using PCA coefficients as features.

SPECT

VAF PCA (m¼3) PCA/LDA FDR-PCA/LDA

SVM

Linear (%) 85.71 89.01 90.11 90.11

(83.67/87.80) (92/85.36) (92/87.80) (92/87.80)

Quadratic (%) – 87.91 89.01 89.01

– (88/87.80) (88/90.24) (88/90.24)

Polynomial (%) – 85.71 90.11 87.91

– (86/85.36) (92/87.80) (90/85.36)

RBF (%) – 89.01 90.11 90.11

– (92/85.36) (92/87.80) (92/87.80)

Feed-forward NN

1 Neur. in HL (%) – 82.42 90.11 85.71

(84/80.48) (88/92.68) (88/82.92)

3 Neur. in HL (%) – 87.91 90.11 91.21

(90/85.36) (88/92.68) (94/87.80)

Neur. in HL (%) – 90.11 87.91 91.21

(94/85.36) (84/92.68) (94/87.80)

7 Neur. in HL (%) – 82.42 89.01 87.91

(82/82.93) (88/90.24) (90/85.36)

Comparison to the VAF baseline.
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Table 3
Results obtained from the evaluation of SVM and slice-by-slice PCA application.

SPECT

Axis direction m/SOI SVM SVM SVM SVM

Linear (%) Quadratic (%) Polynomial (%) RBF (%)

Coronal 3/10 87.91 96.7 90.11 93.41

3/11 87.91 92.31 90.11 93.41

4/10 86.81 90.11 85.71 92.31

4/11 87.91 90.11 89.01 89.01

Sagittal 1/35 89.01 86.81 86.81 87.91

1/36 87.91 89.01 90.11 90.11

Transaxial 3/11 89.01 91.21 84.62 86.81

3/12 91.21 89.01 85.71 84.62

4/11 89.01 87.91 81.32 85.71

4/12 91.21 89.01 78.08 85.71
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by slice, we find that the classification results improve slightly with
respect to using the whole volume. Fig. 5 shows the accuracy rates
obtained by using each slice PCA coefficients as features in
combination with SVM classifiers. As expected, the SOIs
correspond to those regions of the brain where AD affects, i.e.,
the posterior cingulate gyri and precunei, as well as the temporo-
parietal region. A complete set of results is shown in Table 3, where
the number of PCs m used for the data projection and the SOI are
specified. Again we find that no more than m¼3 or 4 PCA
coefficients are needed to classify satisfactorily when the SOI is
found and selected for classification. SVM with quadratic kernel
reaches 96.7% accuracy when PCA is applied on the 10th slice along
the coronal axis, which was the most discriminant one. The
combination of several PCA coefficients corresponding to SOIs
along the three axes has been evaluated as well. However, it did not
provide significant improvements.

8.2. Results on ADNI database

The variety of samples coming from different origins makes the
ADNI database appealing for testing algorithms aiming at detecting
AD. A large number of MCI patients are included in the database
which entails having a wide variety of perfusion patterns that range
from NORMAL to AD patients. Obviously, the classification task
becomes more difficult since the transition between NORMAL and
AD patients is less abrupt. The 219 selected patients are repre-
sented in terms of PCA plus LDA coefficients in Fig. 6. The best
description of this database in terms of PCA coefficients is found
when around m¼30 PCs are used to project the images, especially
when MCI subjects are included. When only AD and NORMAL
patients are considered, m¼8 coefficients is enough to describe the
existing variabilities between these two classes. Results obtained
from this database are presented in the next sections depending on
which classes are desired to be separated.

8.3. Group 1

In this section we present the results obtained in the classifica-
tion task consisting of distinguishing between NORMAL and (AD,
MCI) subjects. As shown in Fig. 6, MCI pattern of brain atrophy is
complex and highly variable, and it evolves in time as the disease
progresses [27,28]. Both SVM and NN classifiers reach accuracy rate
peaks higher than 80%. Specifically, SVM with linear kernel and NN
with k¼1 neuron in the HL reached the highest accuracy rates of
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82.19% and 81.74%, respectively. However, specificity values
highlight that the classification performance carried out by the
classifiers is quite poor, since it does not exceed 50% for any
experiment. To obtain another sample prevalence independent
measures, PL and NL are also presented. An important issue for an
optimal classifier growth is the equitable proportion of positive and
negative training samples, and that is not satisfied in group 1. This
fact yields to deficiencies in the classifier construction, and
therefore lower specificity values. All the results are shown in
Table 4. In these experiments, the mask was applied and no FDR
feature selection was used.
8.4. Group 2

Best results when classifying NORMAL controls versus AD
patients are found when no voxel selection is performed, that is,
the whole volumes are used to extract the PCA coefficients and the
subsequent LDA features. An accuracy peak value is reached for
both SVM and NN classifiers when m¼8 PCA coefficients are used
to project the images before applying LDA. The application of the
FDR criterion on these coefficients improved the results, as shown
in Fig. 7 for SVM. For this value of m, NN with k¼7 neurons in the
Table 4
Accuracy, (sensitivity/specificity) and PL/NL values obtained by evaluating SVM and NN

Group 1

m Linear Quad

SVM 28 81.28% 81.28

(91.61/48.08)% (91.6

1.764/0.174 1.764

30 82.19% 81.74

(92.21/50)% (91.6

1.844/0.156 1.844

k¼1 k¼3

NN 30 81.28% 79.45

(92.81/44.23)% (89.2

1.664/0.163 1.718

33 81.74% 80.82

(92.81/46.15)% (91.0

1.723/0.156 1.753

Data images are projected onto m PCs and the resulting coefficients onto l¼1.
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Fig. 7. Accuracy results obtained when group 2 is considered for classification using SVM

was used.
hidden layer reaches 88.75% accuracy rate with comparable
sensitivity and specificity values (88.68/88.46%, respectively),
and SVM outperforms NN where all the kernels reached the
same accuracy peak of 89.52%. Best values of sensitivity and
specificity obtained by SVM are represented as ROCs in Fig. 8.
This figure gives us more information about the SVM classifier
performances: the RBF kernel reached the best trade-off between
sensitivity and specificity being the area under this curve 0.8668,
followed by the quadratic kernel that covers an area of 0.8572.
8.5. Group 3

The most difficult classification task concerning ADNI database
is to distinguish between NORMAL and MCI patients, due to the
wide range spanned by the features extracted from MCI patients
(see Fig. 6). When a conventional binary classification process is
performed on these two data sets, accuracy rates do not exceed
74.1% by using PCA+LDA features (i.e., one final feature) combined
with SVM with linear or quadratic kernel. Since MCI can be
considered a previous stage of AD [27,29], we make profit of
counting with an AD set of images to improve the classification
results. Recall that LDA finds l ¼ c�1 axis projection, where c is the
in the classification task concerning group 1.

ratic Polynomial RBF

% 80.37% 79%

1/48.08)% (90.42/48.08)% (89.22/46.15)%

/0.174 1.7415/0.199 1.657/0.234

% 79.91% 78.54%

1/50)% (89.22/50)% (88.02/48.08)%

/0.156 1.7844/0.216 1.695/0.249

k¼5 k¼7

% 79.91% 79.91%

2/48.08)% (89.82/48.08)% (89.22/50)%

/0.224 1.730/0.212 1.784/0.216

% 80.82% 80.37%

1/48.08)% (91.02/48.08)% (91.02/46.15)%

/0.187 1.753/0.187 1.690/0.195
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with different kernels. In (a) the FDR criterion was not applied, whereas in (b) FDR
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number of classes, so if we consider AD patients as a different class,
we obtain l¼2 features instead of one, as if we were dealing with a
multiclass problem. Once the l¼2 features are extracted, MCI and
AD patients are labeled together as a unique class in the training
step. Thus, the classifier will design a classification rule that gives
strength to MCI patients, bringing them towards the AD vicinity.
Once the classification rule has been established, only NORMAL and
MCI samples are used to test the CAD system. Fig. 9 shows the
differences on the surface decision designed by a polynomial kernel
SVM classifier when solving the conventional binary classification
problem and when the multiclass trick is used. This method
improves classification results by increasing sensitivity values.
Specificity values prove a poor performance of classifiers in
recognizing NORMAL subjects, but recall group 2 is and
imbalanced data set since the number of MCI samples doubles
the number of NORMAL subjects. To avoid a misinterpretation of
the results, PL and NL are computed as well.

Table 5 shows the results obtained by using both SVM and NN. In
this classification task, best results were found when the mask was
applied. In this case, the FDR criterion to rearrange the PCA
coefficients did not provide better results. It can be seen that the
use of the multiclass trick (l¼2) improves the accuracy results
significantly for all the experiments.
9. Conclusions

In this work, a complete CAD system for the diagnosis of the
early AD has been presented. Several schemes combining different
feature extraction, feature selection and classification techniques



Table 5
Accuracy, (sensitivity/specificity) and PL/NL values obtained by evaluating SVM and NN in the classification task concerning group 3.

Group 3

# PCs Linear Quadratic Polynomial RBF

l¼1 18 74.1% 74.1% 73.49% 73.49%

(86.84/46.15)% (86.84/46.15)% (85.96/46.15)% (85.96/46.15)%

1.613/0.285 1.613/0.285 1.596/0.304 1.596/0.304

l¼2 30 81.33% 77.71% 77.71% 77.71%

(97.37/46.15)% (91.23/46.15)% (91.23/46.15)% (91.22/48.08)%

1.808/0.057 1.694/0.190 1.694/0.190 1.757/0.183

k ¼ 1 k ¼ 3 k ¼ 5 k ¼ 7

l¼1 33 71.08% 72.29% 71.08% 70.48%

(82.46/46.15)% (83.33/48.08)% (82.46/46.15)% (81.58/46.15)%

1.531/0.380 1.605/0.347 1.531/0.380 1.515/0.399

l¼2 40 79.52% 78.31% 79.52% 79.52%

(94.74/46.15)% (93.86/44.23)% (93.86/48.08)% (92.10/46.15)%

1.759/0.114 1.683/0.139 1.801/0.128 1.710/0.171
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have been deeply studied and tested on real SPECT and PET
databases. All the proposals aim at reducing the dimension of
the original images, which after the reconstruction count with
more than 500 000 voxels, to a number of features comparable to
the number of samples, solving that way the so-called small sample

size. Different voxels selection methods are proposed to initially
discard voxels that are not useful for the AD detection. After that,
the input space is transformed by means of PCA and LDA trans-
formations, that compress the useful information in only one or
two features, holding the statistical differences between classes. By
means of simple rearrangements, these features have shown to
work satisfactorily for classification purposes.

The best combination of techniques that compose the complete
CAD systems is not fixed, but depends on the specific database and
the classification task we are dealing with. Only in the classification
stage we can determine that SVM works in general better than NN,
yielding in most cases higher accuracy rates when the same
features are used.

PCA is a compression technique that does not need to rule out
useless voxels for finding the axes that best describe the data set.
However, if the data to be described by PCs concentrate more
differences, the main PCA coefficients will be more useful for
classification. That is the idea behind the slice-by-slice PCA
application, which searches for the best slices for the classification
task that concerns us. This approach reached the higher accuracy
rate for SPECT image classification, yielding 96.7%.

When classes are best classified by linear surfaces or decision
lines, the rearrangement of the PCA coefficients by the FDR criterion
usually yields to higher accuracy rates. For PET images, FDR was
useful when dealing with group 2, which was the best described
group in terms of class separability by means of PCA+LDA features.
However, neither for group 1 nor 3 it outperformed PCA+LDA and
not more.

LDA transformation projects the PCA features onto other space
more reliable for classification, but in contrast it reduces the
features to only one in binary classification problems, which
sometimes might be insufficient, especially with PET images
when dealing with group 3. MCI class is made up of NORMAL
patients that gradually move to AD class, being possible a reverse
conversion to NORMAL state as well as an evolution to other
different type dementia. This makes especially difficult the auto-
matic definition of a separation rule for these two classes. To make
sense to this group experiments, MCI subjects are understood as a
first stage of AD. Thus, we make use of AD samples to extract not
one, but two features. In the test stage though, the CAD system is
evaluated only on NORMAL and MCI samples. The use of this
method increases the sensitivity values noticeably.

The use of imbalanced training data sets of groups 1 and 3
causes two major problems. Firstly, the use of performance
parameters as specificity or sensitivity is inappropriate, since
they are sample prevalence dependent. For instance, a low
specificity value in an imbalanced data set may not reflect a high
false negative rate. This problem is solved by using other sample
prevalence independent parameters, as PL or NL and/or by selecting
balanced data sets such as group 2 (in our case this reduces the
number of scans and affects the learning process, however, it is
useful for comparing feature extraction methods under the same
conditions). Secondly, classifiers are limited in their performance
when dealing with imbalanced data sets [30,31]. However, SVM is
constructed using only feature vectors that are close to the
boundary, i.e. the support vectors. This means that SVM is
unaffected by non-noisy instances far away from the boundary
even if they are huge in number. The election of SVM to manage the
classification task may give response to this second problem.
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